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" S
LOGIC

m Logic Is but a small part of the human
capacity to reason. Logic can be a means
to compel us to infer correct answers, but
It cannot by itself be responsible for our
creativity or for our ability to remember.

m fuzzy logic iIs a method to formalize the
human capacity of imprecise reasoning, or
— later In this chapter — approximate
reasoning.




"
Logic

m Part-| of this chapter introduces the reader
to fuzzy logic with a review of classical
logic and Its operations, logical
implications, and certain classical
iInference mechanisms such as tautologies.

m In Part-1l of this chapter we introduce the
use of fuzzy sets as a calculus for the
Interpretation of natural language.




"
CLASSICAL LOGIC

m In classical logic, a simple proposition P Is
a linguistic, or declarative, statement
contained within a universe of elements,
say X, that can be identified as being a
collection of elements Iin X that are strictly
true or strictly false.

m Hence, a proposition P is a collection of
elements, I.e., a set, where the truth
values for all elements in the set are either
all true or all false.




m The veracity [vallraesr1ti:] (truth) of an element in
the proposition P can be assigned a binary truth
value, called T (P), For binary (Boolean)
classical logic, T (P) is assigned a value of 1
(truth) or O (false).

m If U is the universe of all propositions,
T:ue U—(0,1)

All elements u in the universe U that are true for
proposition P are called the truth set of P,
denoted T (P). Those elements u in the universe
U that are false for proposition P are called the
falsity set of P.




" S
CLASSICAL LOGIC

m For a universe Y and the null

set 2, we define the following
truth values:

T(Y)=1andT(29)=0

Now let P and Q be two
simple propositions on the
same universe of discourse
that can be combined using
the following five logical
connectives to form logical
expressions involving the two
simple propositions.

Disjunction
Conjunction
Negation
Implication
Equivalence




"
Disjunction connective

m The disjunction connective, the logical or,
IS the term used to represent what Is
commonly referred to as the inclusive or.

m The natural language term or and the

logical or differ in that the former implies
exclusion.

m the inclusive or (logical or as used here)
Implies that a compound proposition IS
true If either of the simple propositions Is
true or both are true.




Equivalence connective

m The equivalence connective arises from
dual implication; that Is, for some
propositions P and Q,

m fP— Qand Q —P, thenP « Q.




" S
propositional calculus

m A propositional calculus

(sometimes called the algebra of propositions)

will exist for the case where proposition P measures the
truth of the statement that an element, x, from the

universe X Is contained in set A and the truth of the

statement Q that this element, X, is contained in set B, or
more conventionally,

P :truththatx € A
Q :truththatx € B
where truth is measured in terms of the truth value, I.e.,
fx € A, T(P)=1, otherwise, T (P) =0
ifx € B, T (Q)=1; otherwise, T (Q) =0




or, using the characteristic function to
represent truth (1) and falsity (0), the
following notation results:

(x) = [ x €A
AV =00, x ¢ A
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"
mutual exclusivity

mT (P) N T(Q)=2 we have that the truth
of P always implies the falsity of Q and
vice versa; hence, P and Q are mutually
exclusive propositions.
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"
Example 5.1.
Let P be the proposition “The structural beam is
18WF45",
Let Q be the proposition “The structural beam Is made
of steel.”
Let < be the universe of structural members comprised
of ;
X IS an element (beam), A is the set of all wide-flange
(WF) beams, and B is the set of all steel beams.
Hence,

P:xiIsin A
Q:xIsinB

12




" J
Compound propositions

The five logical connectives already defined can
be used to create compound propositions, where a
compound proposition is defined as a logical
proposition formed by logically connecting two or
more simple propositions.

Just as we are Iinterested in the truth of a simple
proposition, classical logic also involves the

assessment of the truth of compound propositions.

For the case of two simple propositions, the resulting
compound propositions are defined next in terms of their
binary truth values.
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" B
Given a proposition P:x € A, P:x ¢ A, we have the following for the logical
connectives:
Disjunction
Pv(Q:xeAorxeB

(3.1a)
Hence, T(P v Q) = max(T(P), T(Q))
Conjunction
PAQ:xeAandxe B
(5.1b)
Hence, T(P A Q) = min(T(P), T(Q))
Negation
If T(P) =1, then T(P) = 0; if T(P) = 0, then T(P) = 1. (5.1¢)
[mplication
(P—Q):x€dAorxeB
_ (5.1d)
Hence, T(P — Q) =T(PU Q)
Equivalence
(P Q) T(P Q) = [, forT(P)=T(Q) 14{; le)
- ' — 10, for T(P) # T(Q)



"
Implication

m The logical connective implication, i.e., P — Q (P
Implies Q), presented here is also known as the
classical implication.

m In this implication the proposition P is also
referred to as the hypothesis or the antecedent,
and the proposition Q is also referred to as the
conclusion or the consequent.

m The compound proposition P — Q is true in all
cases except where a true antecedent P appears
with a false consequent, Q, i.e., a true
hypothesis cannot Imply a false conclusion.
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Example

m Example 5.2 Consider the following four
propositions:

1. 1f1+ 1:2,t1en4>0. (P— Q):x€AorxeB

2.1f1+1=3,then4 > 0. Hence, T(P — Q) =T(PUQ)

3.1f1+1=3,then 4 <0.

4.1f1+1=2,then 4 <0.

m  The first three propositions are all true; the fourth is

false. In the first two, the conclusion 4 > 0 is true
regardless of the truth of the hypothesis; in the third case
both propositions are false, but this does not disprove
the implication; finally, in the fourth case, a true
hypothesis cannot produce a false conclusion.

16




" S
iImplication

Hence, the classical form of the implication is true for all propositions of
P and Q except for those propositions that are in both the truth set of P

and the false set of Q, i.e.,

T(P — Q)= T(P)NT(Q)

(P — Q) = (A UB is true) = (either “*notin A’ or ““in B"")
so that B B
IT'(P— Q)=T(PvQ)=max(T(P), T(Q}))
A For a proposition P defined on set A and a
AIB proposition Q defined on set B, the

implication “P implies Q" Is equivalent to
taking the union of elements in the
complement of set A with the elementsﬂin

the set B. ——




AlB

This expression is linguistically equivalent to the statement. “*P — ) 1s true”” when either
“not A” or “*B"’ is true (logical or). Graphically. this implication and the analogous set
operation are represented by the Venn diagram in Fig. 5.1. As noted in the diagram, the
region represented by the difference A | B is the set region where the implication P — Q is
false (the implication **fails’"). The shaded region in Fig. 5.1 represents the collection of
elements in the universe where the implication is true; that is. the set

ATB=AUB=ANB
Ifx isin A and x 1s not in B, then

A — B fails = A | B (difference)
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TABLE 5.1

Truth table for various compound propositions

p Q P PvQ PAQ P—Q P Q
T(1) T(1) F (0) T(1) T(1) T(1) T(1)
T(1) F (0) F (0) T(1) F(0) F (0) F (0)
F(0) T(1) T(1) T(1) F(0) T(1) F (0)
F(0) F (0) T (1) F (0) F(0) T(1) T(1)

T(Pwv Q) =max(T(P), T(Q))
T(PAQ)y=mmn(T(P), T(Q))
If T(P) = 1, then T(P) = (

TP — Q)= T(PvQ)=max(T(P), T(Q))

I, forT(P)=T(Q)

TP —Q =14 forTP) £ T(Q)
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"
m  Suppose the implication operation
Involves two different universes of discourse;

m P IS a proposition described by set A, which
Is defined on universe X,

m O IS a proposition described by set B, which
IS defined on universe Y.

m Then the implication P —Q can be
represented in set-theoretic terms by the
relation R, where R Is defined by

R=(AxBUMxY)=IFA, THENB

20




" A
R=(AxB)UA xY)=IF A, THENB
IFxe Awherexe Xand A C X
THEN ye Bwhereve Yand BC Y

P—Q:IFxeA, THENyeB, or P— Q=AUB

Xk

s
L

B Y

FIGURE 5.2 21
The Cartesian space showing the implication IF A, THEN B. <




" [F A, THEN B, ELSE C

Linguistically, this compound proposition could be expressed as
IF A, THENB, and IFA, THENC
[n classical logic this rule has the form

P— QAP —YS)
P: xeA ACX
Q: veB,BCY
S: ve(C,CCY
IF A. THEN B, ELSEC = (A x ByU(A x C) =R = relationon X x Y

X4

22




" S
Tautologies

m [0 consider compound propositions that
are always true, Irrespective of the truth
values of the individual simple propositions.
Classical logical compound propositions
with this property are called tautologies.

m Tautologies are useful for deductive

reasoning, for proving theorems, and for
making deductive inferences.

23




" B
Tautologies

m If a compound proposition can be expressed in
the form of a tautology, the truth value of that
compound proposition is known to be true.

m Inference schemes in expert systems often
employ tautologies because tautologies are
formulas that are true on logical grounds alone.

m For example, if Ais the set of all prime numbers
(Al=1,A2=2,A3=3,A4=5,...)onthereal
line universe, X, then the proposition “A is not
divisible by 6” Is a tautology.

24




"
modus ponens

m One tautology, known as modus ponens
deduction, Is a very common inference scheme
used in forward- -chaining rule-based expert

systems. (It Is an operation whose task is to find the truth value

of a consequent in a production rule, given the truth value of the
antecedent in the rule.)

m Modus ponens deduction concludes that, given
two propositions, P and P — Q, both of which
are true, then the truth of the simple proposition
Q Is automatically inferred.

25




" A
modus tollens

m Another useful tautology Is the modus
tollens inference, which is used in
backward-chaining expert systems.

m [N modus tollens an implication between
two propositions is combined with a
second proposition and both are used to
Imply a third proposition.

26




" S
Some common tautologies :

mBUB —— X

mAUX AUX<——X

m (A /A (A-— B)) —— B (modus ponens)
m (B/\ (A—— B)) — A (modus tollens)




A simple proof of the truth value of the modus ponens deduction is provided here
Proof AAA— B)) — B

(AA(AUB)) — B Implication
(AAAYU(AAB) — B Distributivity

WU (AAB)— B Excluded middle axioms
(AnB)— B Identity
(AAB)YUB Implication
(AvB)UB De Morgan's principles
Av (BUB) Associativity
AUX Excluded middle axioms
X=T(X)=1 Identity, QED
TABLE 5.2
Truth table (modus ponens)
A B A—= B (AAIA—= B)) (AAA—=B)—=B
0 0 1 ( 1
0 1 1 0 1 Tautology
1 0 0 0 1 28
1 1 1 1 1 < | »




" A
a simple proof of the truth value of the modus tollens inference is listed here.
Proof B2rA—B)—A
(BA(AUB)) — A
(BAA)UMBAB)) — A
(BAA)UW) — A

(BAA) — A
(BAA)UA
(BvA)UA
BU(AUA)
BUX=X=T(X)=1 QED
TABLE 5.3
Truth table (modus tollens)
A B A B A— B (BA(A—= B)) (BA(A— B)) — A
0 0 I I l l I
0 1 1 0 | 0 1 Tautology
1 0 0 1 0 0 1 29
1 1 0 0 1 0 1 < |




" A
Contradictions

m Compound propositions that are always false, regardless
of the truth value of the individual simple propositions
constituting the compound proposition, are called
contradictions.

m For example, if A Is the set of all prime numbers (A, = 1,
A,=2,A;=3,A,=5,...)onthe real line universe, X,
then the proposition “A;is a multiple of 4” is a
contradiction.

m Some simple contradictions are listed here:
BNB

ANe A No




"
Equivalence

m propositions P and Q are equivalent, I.e.,
P < Q, is true only when both P and Q are
(rue or when both P and Q are false.

m For example,
P: “triangle Is equilateral”
Q: “triangle Is equiangular”
are equivalent because they are either
both true or both false for some triangle.

31




FIGURE 5.4
Venn diagram for equivalence (darkened areas), 1.e., for T (A < B).
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Example 5.3. Suppose we consider the universe of positive integers, X = {l <n < 8}. Let
P="nmisaneven number’’ and let Q = 3 <n <7)A(n #£6).” Then T(P) = {2,4, 6, 8}
and 7(Q) = {3.4,5,7}. The equivalence P <> Q has the truth set

I'P«— Q) =(TP)NTQ))UTP)NTQ)) ={4;Ul{l} ={1.4}

One can see that “*1 1s an even number’” and **(3 <1 < 7) A (1 # 6)" are both false, and **4
is an even number’’ and “*(3 <4 < 7) A (4 # 6)"" are both true.

Example 5.4. Prove that P <+ Q if P = **n 1s an mteger power of 2 less than 7 and greater
than zero’” and Q = ““n* — 6n + 8 = 0.”” Since T(P) = {2, 4} and T(Q) = {2, 4}, it follows
that P <= Q 1s an equivalence.

33




"
m Suppose a proposition R has the form

P — Q. Then the propositioiQ — P is
called the contrapositive of R.

m The proposition Q —P Is called the
converse of R.

m The proposition P — Q is called the
iInverse of R.

34




" A
dual

m The dual of a compound proposition that
does not involve implication Is the same
proposition with false (0) replacing true (1)

(i.e., a set being replaced by its complement), true replacing false,
conjunction (/\) replacing disjunction (), and disjunction replacing
conjunction.

m |[f a proposition is true, then its dual Is also
true.

35




« B
Exclusive Or and Exclusive Nor

m T he exclusive or:

( For example, when you are going to travel by plane or boat to some
destination, the implication is that you can travel by air or sea, but
not both, I.e., one or the other.)

m This situation involves the exclusive or: it
does not involve the Iintersection.

m For two propositions, P and Q, the
exclusive or, denoted here as XOR, Is
given in Table 5.4 and Fig. 5.5.

36




TABLE 5.4

Truth table for exclusive

or, XOR

——————————————————————— I(P)

P Q P XOR Q

| | 0

| 0 | T(Q)
0 [ |

0 0 0

FIGURE 5.5
Exclusive or shown 1n gray areas.

37




« BN
exclusive nor

m The exclusive nor Is the complement of
the exclusive or.

TABLE 5.5
Truth table for exclusive nor

P Q P XOR Q

| | I
| 0 0
0 l 0
0 0 |

PXORQ «— (P «—— Q)




"
Logical Proofs

m Logic involves the use of inference In
everyday life, as well as in mathematics.

m [n natural language, we often inferring new
facts from established facts.

m [n the terminology we have been using, we
want to know Iif the proposition

(PL A P2A --- /A Pn)— Qistrue. That
IS, IS the statement a tautology?

39




The process works as follows

m First, the linguistic statement (compound
proposition) is made.

m Second, the statement Is decomposed Into Its
respective single propositions.

m Third, the statement is expressed algebraically
with all pertinent logical connectives in place.

m Fourth, a truth table Is used to establish the
veracity of the statement.

40
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Example 5.5.

m Hypotheses: Engineers are mathematicians.
Logical thinkers do not believe in magic.
Mathematicians are logical thinkers.

Conclusion: Engineers do not believe in magic.

m Let us decompose this information into individual
propositions.

P . a person is an engineer

Q : a person is a mathematician
R : a person is a logical thinker
S : a person believes in magic

41




"
m The statements can now be expressed as
algebraic propositions as

(P— QAR — S)A(Q — R)) — (P — S)

It can be shown that this compound proposition
IS a tautology.

42




Example 5.6.

Hypotheses: 1t an arch-dam fails, the failure 1s due to a poor subgrade. An arch-dam fails.
Conclusion: The arch-dam failed because of a poor subgrade.

This information can be shown to be algebraically equivalent to the expression
(P—QAP)—Q
To prove this by contradiction, we need to show that the algebraic expression
(P— Q) APAQ)

1s a contradiction. We can do this by constructing the truth table in Table 5.6. Recall that a
contradiction is indicated when the last column of a truth table is filled with zeros.

43




TABLE 5.6
Truth table for dam failure problem

P Q P Q PvQ PVQ)APAQ
0 0 1 1 1 0
0 1 1 0 1 0
1 0 0 1 0 0
1 1 0 0 1 0

44




" B
Deductive Inferences

m The modus ponens deduction is used as a tool
for making inferences in rule-based systems.

m A typical if—then rule is used to determine
whether an antecedent (cause or action) infers a
consequent (effect or reaction).

m Suppose we have a rule of the form IF A, THEN
B, where A Is a set defined on universe X and B
IS a set defined on universe Y.

m this rule can be translated into a relation
betweensets Aand B; R= (A xB)U(A xY)

45




" A

m Now suppose a new antecedent, say A, IS
known. Can we use modus ponens deduction to
Infer a new consequent, say B’, resulting from
the new antecedent? That is, can we deduce, In
rule form, IF A’, THEN B’? The answer, of
course, Is yes, through the use of the
composition operation .

m Since “A implies B” is defined on the Cartesian
space X X Y, B’ can be found through the
following set-theoretic formulation,

B = A'oR = A’o((A x B)U (A x Y))

46




m Modus ponens deduction can also be used for
the compound rule IF A, THEN B, ELSE C,
where this compound rule Is equivalent to the

relation  p — (AxB)UA x C)

m For this compound rule, if we define another
antecedent A’, the following possibilities exist,
depending on

(1) whether A’ is fully contained in the original
antecedent A,

(2) whether A’ Is contained only in the
complement of A, or

(3) whether A’ and A overlap to some extent as
described next:

47




" A

IFA’ c A, THEN y =

IFA'c A, THENy=C

IFA'NA#0, ANA#Y THEN y=BUC

The rule IF A, THEN B (proposition P is defined on set A in universe X, and proposition Q
1s defined on set B in universe Y), 1.e., (P - Q) =R = (A x B) U (A x Y), 1s then defined
in function-theoretic terms as

JrR(x, y) =max[(xa(x) A xg(y)), (1 — xa(x)) A 1)] (5.9)

where y () 1s the characteristic function as defined before.

48
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Example 5.7.

m Suppose we have two universes of discourse for a
heat exchanger problem ,X ={1, 2, 3,4} and ¥ ={1,
2,3,4,5, 6}.Suppose X Is a universe of normalized
lemperatures and Y Is a universe of normalized

m Define crisp set A on universe X and crisp set B on
universe Y : A ={2, 3} and B = {3, 4}.

m The deductive inference IF A, THEN B will yield a
matrix describing the membership values of the
relation R, i.e., xx(X, y) .That is, the matrix R
represents the rule IF A, THEN B as a matrix of
characteristic (crisp membership) values.

49




Then the full relation R describing the
implication IF A, THEN B is the
maximum of the two matrices

AxBand A xY

oo oo

e o —

0
0
0
0

0
0
0
0

0
0

LN

0
0




m The compound rule IF A, THEN B, ELSE
C can also be defined Iin terms of a
matrix relation as

R=AxBUAxC)=P->QAP-=>S)

m Where the membership function is
determined as

xr(x,y) =max[(xa(x) A xsg(y)), (1 — xa(x)) A xc(y))]
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Fuzzy logic

m The restriction of classical propositional calculus
to a two-valued logic has created many
Interesting paradoxes over the ages.

m For example, the Barber of Seville Is a classic

paradox (also termed Russell's

In the small Spanish town of Sevil
rule that all and only those men w

parber).
e, there is a

No do not

shave themselves are shaved by the barber.

Who shaves the barber?

52




" B
Barber of Seville

m Returning to the Barber of Seville, we conclude
that the only way for this paradox

(or any classic paradox for that matter) to work
IS If the statement Is both true and false
simultaneously.

m This can be shown, using set notation.

Let S be the proposition: the barber shaves himself
S (not S) that he does not.

Then since S — S and S — S. we have

I(S)=TS)=1-T() T =3 -

4 | »




m paradoxes reduce to half-truths (or half-
falsities) mathematically. In classical
binary (bivalued) logic, however, such
conditions are not allowed, I.e., only T(S) =
1 or O is valid.

m this Is a manifestation of the constraints
placed on classical logic by the excluded
middle axioms.

m A more subtle form of paradox can also be
addressed by a multivalued logic.
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m A fuzzy logic proposition, P Is a statement
Involving some concept without clearly
defined boundaries.

m Most natural language is fuzzy.

m The truth value assigned to P can be any
value on the interval [O, 1].

T:ueuU—- (0,1

T'(P) = pa(x) where0 <y =1

55




The logical connectives of negation, disjunction, conjunction,
and implication are also defined for a fuzzy logic.

Negation .
I'Py=1-1(P)

Disjunction
PvQ:xisAorB T(PvQ)=max(T(P), T(Q))

L =

Conjunction
PArQ:xisAandB  T(P A Q)=min(7(P), 7(Q))

Implication [Zadeh, 1973]
P— Q:xis A, thenxisB

T(P — Q) =T(P v Q) = max(T(P), T(JY)




"
P—Qis IF x is A, THEN y 1s B

e

It Is equivalent to the following fuzzy relation,

R=(AxB)U(A xY)

prx, v) = max[(pa(x) A pp(y)), (1 — pa(x))]
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Example 5.9, Suppose we are evaluating a new invention to determine its commercial
potential. We will use two metrics to make our decisions regarding the innovation of the idea.
Our metrics are the ““uniqueness’” of the invention, denoted by a universe of novelty scales,
X =11,2,3,4}, and the “‘market size’” of the invention’s commercial market, denoted on a
universe of scaled market sizes, Y = {1, 2, 3.4, 5, 6}. In both universes the lowest numbers
are the ““highest uniqueness’ and the “‘largest market,”” respectively. A new invention in
your group, say a compressible liquid of very useful temperature and viscosity conditions, has
just received scores of “"medium uniqueness,”” denoted by fuzzy set A, and “"medium market
size,”” denoted fuzzy set B. We wish to determine the implication of such a result, Le., IF A,

THEN B. We assign the invention the following fuzzy sets to represent its ratings:

A = medium uniqueness = 0.6 + : + 0.2
A= 4 12 "3 4

_ _ 0.4 | 0.8 0.3
B = medium market size = {? —|—§+ 1 + 5 ]

03 05 06 06 05 03
C = diffuse market size =
C iffuse 351ze|1—|—2—|—3—|—4—|—5 6}




=

1 2 3
"0 0 0
0 04 06
0 04 1
0 02 02
1 2 3
S
04 04 04
0 0 0
0.8 08 08

=max(A x B,A x Y)

0

{7
I
= Lo b =

0.4 1

0.4 04 04
o 0 0

0.8 08 0.8

0.6

0.2

04 04 06 06 04 04
0.8 0.3
0.8 08 08 08 08 08

© 04 1 08 0.3)]

0

take min




"

[F xis A, THEN yis B, ELSE yis C
R=(AxB)U(AxC)

MR(X, y) = max I:(H{..(-r) A ps (), (1 — palx)) A Hg(}’))]

1 2 3 4 5 6

3 05 06 06 05 037

1
— _ 2103 04 04 04 04 03
R=(AxB)UAxC) 2xE=3514% o 0o 0o 0 o0
4

0.3 05 0.6 0.6 0.5 03

1 2 3 4 5 6 _] 23 45 6_
170 0 0 0 0 07 11 0.3 0.5 0.6 0.6 0.5 0.3
AxB=— 210 04 06 06 03 0 2103 04 06 06 04 03
AXB=13109 04 1 08 03 0 Ezq 0 04 1 08 03 0
410 02 02 02 02 0 - ' ' -
- - 4103 0.5 0.6 06 0.5 03

o
o



APPROXIMATE REASONING

m The ultimate goal of fuzzy logic Is to
form the theoretical foundation for
reasoning about imprecise
propositions; such reasoning has

been referred to as approximate
reasoning.
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"
Rule I: IF x 1s A, THEN v 1s B, where A and B represent fuzzy propositions (sets).
Now suppose we infroduce a new antecedent, say A', and we consider the following rule:
Rule 2: IF x s A", THEN y1s B'.
From information derived from Rule 1, is it possible to derive the consequent in Rule 2,

B"? The answer 1s yes, and the procedure 1s fuzzy composition. The consequent B can be
found from the composition operation, B = A'oR.

rrea

The two most common forms of the composition operator
are the max—min and the max—product compositions, as
initially defined in Chapter 3.
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" J
Example 5.10. Continuing with the invention example, Example 5.9, suppose that the fuzzy
relation justdeveloped, i.e., R, describes the invention’s commercial potential. We wish to know

what market size would be associated with a uniqueness score of “*almost high uniqueness.™
That is, with a new antecedent, A’, the following consequent, B', can be determined using

composition. Let

A’ = almost high uniqueness =

Then, using the following max—min composition,

L
N

we get the fuzzy set describing the associate
fairly diffuse, where there 1s no strong (or weak)

scores (1.e.. no membershin values near () or 1.
<05 1 03 0>

1 2 3 4 5 6

I [/1 1 1 1 1 I ] i 04 0 O.

R — 2104) 04 06 06 04 04 )

~— 3110704 1 08 03 0 95\9\4 0 Q 63
4108/ 0.8 08 08 08 0.8 max:0.5 < | »




m An Interesting issue in approximate reasoning IS
the idea of an inverse relationship between
fuzzy antecedents and fuzzy consequences
arising from the composition operation.

m Suppose we use the original antecedent, A, In
the fuzzy composition. Do we get the original
fuzzy consequent, B, as a result of the operation?
That Is, does the composition operation have a
unique inverse, I.e.,.B =A°R? The answer is an
unqualified no, and one should not expect an
Inverse to exist for fuzzy composition.
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Example 5.12. Again, continuing with the invention example, Examples 5.9 and 5.10, suppose
that A" = A = “‘medium uniqueness.”’ Then

04 04 1 08 04 04
B=AR=AR=\—+—+s+—+—+— #B

That 1s, the new consequent does not yield the original consequent (B = medium market size)
because the inverse 18 not guaranteed with fuzzy composition.
In classical binary logic this inverse does exist; that
IS, crisp modus ponens would give
B =A°R =A°R =B,
where the sets A and B are crisp, and the relation R
IS also crisp.
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Example 5.13. Suppose vou are a soils engineer and you wish to track the movement of

soil particles under applied loading in an experimental apparatus that allows viewing of the
soil motion. You are building pattern recognition software to enable a computer to monitor
and detect the motions. However, there are some difficulties in “‘teaching’ your software
to view the motion. The tracked particle can be occluded by another particle. The occlusion
can occur when a tracked particle is behind another particle, behind a mark on the camera’s
lens, or partially out of sight of the camera. We want to establish a relationship between
particle occlusion, which is a poorly known phenomenon, and lens occlusion, which is quite
well-known in photography. Let these membership functions,

0.1 09 0.0 0 1 0
%=!—+ + ] and E={—+—+—]

X X7 X3 ¥l Y2 y3

describe fuzzy sets for a rrg%mﬂdmbeth another particle and a

lens mark associated with moderate image qualify,respectively. Fuzzy set A is defined on a
universe X = {x, x2, x3} of tracked particle indicators, and fuzzy set B (note in this case that
B is a crisp singleton) 1s defined on a universe Y = {y, v2, y3} of lens obstruction indices. A

typical rule might be: IF occlusion due to particle occlusion 1s moderate, THEN image quality
will be similar to a moderate lens obstruction, or symbolically,

[F xis A, THEN yisBor (AxB)U(AxY)=R
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We can find the relation, R, as follows:

Ay

Y2 » Y1 2 Y3
xx 0 0.1 0 x 709 09 0.9
AxB=x| 0 09 0 AxY=x |01 01 0.1
o xy | 0O 0 0 - X3 | | |
_ 0.9 09 09
g:(gxg}mg}xl’):[ﬂ.l 0.9 ﬂ.l]
l 1 |

This relation expresses in matrix form all the knowledge embedded in the implication. Let A’

be a fuzzy set, in which a tracked particle is behind a particle with slightly more occlusion than
the particle expressed in the original antecedent A, given by

, [03 10 0.0
E}z{ +—+ }

X1 X2 X3




"
We can find the associated membership of the image quality using max—min composition. For
example, approximate reasoning will provide

and we get

0.9 09 09
0.3 09 0.3
B'=[0310]c| 0.1 0.9 0.1 :i I }
| | | Y1 ¥z ¥3

This image quality, B', is more fuzzy than B, as indicated by the former’s membership function.




Other forms of the implication operation

There are other techmiques for obtaming the fuzzy relation R based on the IF A, THEN B,
or R = A — B. These are known as fuzzy implication operations, and they are valid for all
valuesofr e Xandy €Y. waluesofr e XandveYy.

pp(x, ¥) = max[up(y), 1 — pa(x)]
pr(x, y) = min[pa(x). pp(y)]

pur(x, y) = min{l, [T — pa(x) + ()]}
HUR(X, V) = pra(x) - pp(y)

[, for pa(x) = pp(y)

HR(Y, V) = up(y),  otherwise 09
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